anno1982.de


English   de  en
Impressum
Datenschutz
Contact

Publications



  1. Extension of the primitive model by hydration shells and its impact on the reversible heat production during the buildup of the electric double layer.
    P. Pelagejcev, F. Glatzel, and A. Härtel.
    J. Chem. Phys. 156, 034901(13pp) (2022)
    DOI: 10.1063/5.0077526 [article online]
    arXiv:2111.03325 [cond-mat.soft] [preprint version]
  2. Bayesian unsupervised learning reveals hidden structure in concentrated electrolytes.
    P. Jones, F. Coupette, A. Härtel, and A. A. Lee.
    J. Chem. Phys. 154, 134902(7pp) (2021)
    DOI: 10.1063/5.0039617 [article online]
    arXiv:2012.10694 [cond-mat.soft] [preprint version]
    Related cover page:
       The Journal of Chemical Physics, Volume 154, Issue 13 [article online]
  3. Primitive Model Electrolytes in the Near and Far Field: Decay Lengths From DFT and Simulations.
    P. Cats, R. Evans, A. Härtel, and R. van Roij.
    J. Chem. Phys. 154, 124504(20pp) (2021)
    DOI: 10.1063/5.0039619 [article online]
    arXiv:2012.02713 [cond-mat.soft] [preprint version]
    Related Scilight:
       Seeking the origins of a mysteriously large decay length in electrolytes.
       by Anashe Bandari.
       DOI: 10.1063/10.0004266 [article online]
  4. Reversible heat production during electric double layer buildup depends sensitively on the electrolyte and its reservoir.
    F. Glatzel, M. Janssen, and A. Härtel.
    J. Chem. Phys. 154, 064901(13pp) (2021)
    DOI: 10.1063/5.0037218 [article online]
    arXiv:2102.07430 [cond-mat.soft] [preprint version]
    Related erratum:
       J. Chem. Phys. 154, 139901 (2021)
       DOI: 10.1063/5.0049716 [article online]
  5. Continuum percolation expressed in terms of density distributions.
    F. Coupette, A. Härtel, and T. Schilling.
    Phys. Rev. E 101, 062126(14pp) (2020)
    DOI: 10.1103/PhysRevE.101.062126 [article online]
    arXiv:1908.06776 [cond-mat.stat-mech] [preprint version]
  6. Screening Lengths in Ionic Fluids.
    F. Coupette, A. A. Lee, and A. Härtel.
    Phys. Rev. Lett. 121, 075501(6pp) (2018)
    DOI: 10.1103/PhysRevLett.121.075501 [article online]
    arXiv:1803.10596 [cond-mat.stat-mech] [preprint version]
    Supplemental Material: PDF document, 0.3 MB [download]
  7. Three-body correlations and conditional forces in suspensions of active hard disks.
    A. Härtel, D. Richard, and T. Speck.
    Phys. Rev. E 97, 012606(17pp) (2018)
    DOI: 10.1103/PhysRevE.97.012606 [article online]
    arXiv:1708.01115 [cond-mat.soft] [preprint version]
  8. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it.
    A. Härtel.
    J. Phys.: Condens. Matter 29, 423002(24pp) (2017)
    DOI: 10.1088/1361-648X/aa8342 [article online]
  9. Anisotropy and memory during cage breaking events close to a wall.
    M. Kohl, A. Härtel, and M. Schmiedeberg.
    J. Phys.: Condens. Matter 28, 505001(12pp) (2016)
    DOI: 10.1088/0953-8984/28/50/505001 [article online]
    arXiv:1610.07846 [cond-mat.soft] [preprint version]
  10. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory.
    A. Härtel, S. Samin, and R. van Roij.
    J. Phys.: Condens. Matter 28, 244007(11pp) (2016)
    DOI: 10.1088/0953-8984/28/24/244007 [article online]
    arXiv:1604.07965 [cond-mat.soft] [preprint version]
  11. Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study.
    A. Härtel, M. Kohl, and M. Schmiedeberg.
    Phys. Rev. E 92(4), 042310(19pp) (2015)
    DOI: 10.1103/PhysRevE.92.042310 [article online]
    arXiv:1510.09162 [cond-mat.soft] [preprint version]
  12. Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors.
    A. Härtel, M. Janssen, D. Weingarth, V. Presser, and R. van Roij.
    Energy Environ. Sci. 8, 2396(6pp) (2015)
    DOI: 10.1039/C5EE01192B [article online (Open Access)]
  13. Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination.
    A. Härtel, M. Janssen, S. Samin, and R. van Roij.
    J. Phys.: Condens. Matter 27(19), 194129(12pp) (2015)
    DOI: 10.1088/0953-8984/27/19/194129 [article online]
    arXiv:1411.5516 [cond-mat.soft] [preprint version]
  14. Boosting Capacitive Blue-Energy and Desalination Devices with Waste Heat.
    M. Janssen, A. Härtel, and R. van Roij.
    Phys. Rev. Lett. 113(26), 268501(5pp) (2014).
    DOI: 10.1103/PhysRevLett.113.268501 [article online]
    arXiv:1405.5830 [cond-mat.stat-mech] [preprint version]
  15. Density functional theory of heterogeneous crystallization.
    T. Neuhaus, A. Härtel, M. Marechal, M. Schmiedeberg, and H. Löwen.
    Eur. Phys. J. Special Topics 223(3), 373(15pp) (2014).
    DOI: 10.1140/epjst/e2014-02097-x [DOI] [article online]
  16. Differently Shaped Hard Body Colloids in Confinement: From passive to active particles.
    H. H. Wensink, H. Löwen, M. Marechal, A. Härtel, R. Wittkowski, U. Zimmermann, A. Kaiser, and A. M. Menzel.
    Eur. Phys. J. Special Topics 222(11), 3023(15pp) (2013).
    DOI: 10.1140/epjst/e2013-02073-0 [DOI] [article online]
    arXiv:1309.5934 [cond-mat.soft] [preprint version]
  17. Density functional theory of hard colloidal particles: From bulk to interfaces.
    A. Härtel.
    Shaker Verlag 2013.
    ISBN: 978-3-8440-1808-0 [book online]
    Heinrich-Heine University [online publication]
    PDF document, 5.9 MB [download]
  18. Tension and Stiffness of the Hard Sphere Crystal-Fluid Interface.
    A. Härtel, M. Oettel, R. E. Rozas, S. U. Egelhaaf, J. Horbach, and H. Löwen.
    Phys. Rev. Lett. 108(22), 226101(5pp) (2012).
    DOI: 10.1103/PhysRevLett.108.226101 [article online]
    arXiv:1203.2857 [cond-mat.soft] [preprint version]
  19. Inhomogeneous fluids of colloidal hard dumbbells: Fundamental measure theory and Monte Carlo simulations.
    M. Marechal, H. H. Goetzke, A. Härtel, and H. Löwen.
    J. Chem. Phys. 135(23), 234510(13pp) (2011).
    DOI: 10.1063/1.3664742 [article online]
  20. Free energies, vacancy concentrations, and density distribution anisotropies in hard-sphere crystals: A combined density functional and simulation study.
    M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, and T. Schilling.
    Phys. Rev. E 82(5), 051404(14pp) (2010).
    DOI: 10.1103/PhysRevE.82.051404 [article online]
    arXiv:1009.0613 [cond-mat.soft] [preprint version]
  21. Towing, breathing, splitting, and overtaking in driven colloidal liquid crystals.
    A. Härtel, R. Blaak, and H. Löwen.
    Phys. Rev. E 81(5), 051703(5pp) (2010).
    DOI: 10.1103/PhysRevE.81.051703 [article online]
  22. Fundamental measure density functional theory for hard spherocylinders in static and time-dependent aligning fields.
    A. Härtel and H. Löwen.
    J. Phys.: Condens. Matter 22(10), 104112(11pp) (2010).
    DOI: 10.1088/0953-8984/22/10/104112 [article online]
  23. Charged colloidal particles in a charged wedge: do they go in or out?.
    H. Löwen, A. Härtel, A. Barreira-Fontecha, H. J. Schöpe, E. Allahyarov, and T. Palberg.
    J. Phys.: Condens. Matter 20(40), 404221(13pp) (2008).
    DOI: 10.1088/0953-8984/20/40/404221 [article online]


 
© A. Härtel (2022)